行业专项 探讨:酿醋废水厌氧处理技术应用与改进 [复制链接]

1929 0
京东
01 水质参数
' r. X1 Q, Z8 Q5 }5 J1 O- J6 z5 O7 u9 a" e1 F) C
本项目主要进水水质指标如表所示。
7 d0 n% _# I( t( I/ z$ f9 S! @ 环保之家0.JPG
/ A  L/ ^; A/ O# |. t
# p1 x2 k* o4 {& B1 D02 厌氧技术在制醋废水处理系统中的应用与改进
* n) U( H5 m& {  J
, N* L! k* _7 G- I: i2.1 制醋废水原有处理工艺及运行情况
. \" _# T$ G- ^. g4 s5 v# o6 ~& z2 e6 Y" e1 [# w
制醋废水原有工艺流程如图。# f& P4 \7 N# V

% s  z; p: I" R& \& y 环保之家1.JPG
. M% E  \2 L# X. [  J. N/ e( ]; R  I" l5 C4 F# J3 U5 d" Y
原有废水处理系统设计规模为1 300 m3/d,待处理废水中是没有引入醋糟压榨水的,醋糟未经压榨进入肥料厂,醋糟水在肥料厂的水处理系统进行处理,故进水CODCr=2 500 mg/L,TSS=300 mg/L。原系统中AO池设计水力停留时间为70 h,MLSS浓度约2 500 mg/L,经原有系统处理后可以满足污水排放要求。本项目出水排放至市政管网,最终出水的排放要求如表。7 K/ a. |! l. ]) ~9 v
6 m* ~( h  G  |5 J0 W; I
环保之家2.JPG 0 t: Y+ H: N/ t% R; ?, c* o, X, E$ O
0 ]( ~4 T5 o9 {( ^( O- N! X1 t. c/ R
2.2 制醋废水改造后的工艺流程! J( ]& f  }: v# \
- Z6 K1 {* R  y, G
5 C+ J6 _4 z* q& s5 S$ k
改造后的处理流程主要增加了UASB厌氧反应器及配套的沼气处理设施,即沼气涤气塔、沼气稳压柜、,沼气燃烧器、蒸汽锅炉。UASB厌氧反应器设计进水量为2 160 m3/d,进水SCOD负荷为11 000 kg/d。工艺流程如图。- \$ a/ I! W* V$ i/ u% z: z$ a% Q

( t: t2 [7 K( ^: @+ y) C 环保之家3.JPG
3 T) Q. d5 U, y! k; Z$ ~# P: Z+ W! @. Z
目前主流的厌氧工艺设备有UASB厌氧反应器和IC厌氧反应器,对于厌氧工艺的选择主要有下述考虑:本项目中醋糟压榨水和醋超滤浓水虽然水量较小,但是在混合废水的COD浓度中贡献较大,这两股废水的主要成分是醋酸。由醋酸转化成甲烷的化学反应方程[下式]可知,该反应产生的吉布斯自由能较低,理论上合成的微生物细胞少,不利于污泥的颗粒化生长。
1 H- c2 R* v+ _/ p! c
! U" n9 u; C. X 环保之家4.JPG " |* Z6 t8 ?, H2 M' m" G

& b2 Z. [3 G8 m( W5 j如果反应器内为絮状污泥,则IC厌氧反应器并不适用。采用UASB反应器,可以控制相对较低的上升流速,适用于絮状污泥。本项目UASB反应器满负荷时上升流速为0.5 m/h。' Z. S% j* J2 \" U% v# F& m+ _
9 H, z' I: {- R) ~: V1 Y/ b
本项目UASB反应器直径为15 m,高度为17 m,有效容积为2 827 m3,水力停留时间为31 h,设计容积负荷为3.9 kg SCOD/m3。实际工程应用过程中,出于快速启动的目的,UASB反应器内接种的是造纸废水项目IC反应器内性能良好的颗粒污泥。接种污泥的颗粒粒径较大,平均直径为2~5 mm。经过1年的运行后,颗粒污泥的粒径明显变小,平均直径为0.5~1 mm。污泥颗粒完整、表面黑亮光泽、沉降性良好、甲烷比产气率高、污泥活性良好。污泥颗粒逐步减小与设计前的预判一致。运行过程中出现进水施加负荷过高的情况,厌氧出水取样有污泥随水流出反应器。此时用50 mL量筒取反应器底部污泥样,发现污泥出现分层现象,上层污泥表面附着微小气泡,样品静置30 min后,污泥全部落至量筒底部。根据上述情况可知,即使选择很低的上升流速,高负荷情况下仍然容易出现污泥流失的情况。
; B, N; c/ w, _  t9 |- w! s( I2 b* G5 a9 D2 p4 @" ?7 w
厌氧降解过程中有机污染物被微生物降解产生甲烷和二氧化碳,即我们通常所说的沼气的主要成分,因此,在工艺流程中设置了沼气处理系统。据报道,每处理1 kg COD理论上可以产生0.35 m3的CH4气体(0 ℃、1.013×105 Pa下)。CH4气体的燃烧值为3.93×107 J/m3,高于天然气的燃烧值3.53×107 J/m3。目前工程实际中常用的反应器为中温厌氧反应器,反应器的最佳运行温度为35~38 ℃,而制醋废水无论冲洗水、压榨水还是醋超滤浓水都是常温水,特别是在冬天,不能满足厌氧进水要求,因此,需要进行蒸汽加热。本项目利用厌氧系统产生的沼气作为蒸汽锅炉燃料,制备蒸汽对反应器进水进行升温,实现资源利用,降低运行成本。本项目预计满负荷时沼气产量为200 m3/h,设计选择2 t/h的蒸汽锅炉,蒸汽压力1.0 Mpa。沼气中含有少量的硫化氢气体,为了避免硫化氢对蒸汽锅炉造成腐蚀,设置沼气涤气塔,通过碱液喷淋吸收沼气中的硫化氢。考虑到瞬时沼气产量的波动,沼气涤气塔处理能力按照400 m3/h设计。净化后的沼气进入沼气稳压柜,恒压输送至蒸汽锅炉。考虑锅炉检修等特殊情况,设置沼气燃烧器,当沼气不能被利用时输送至沼气燃烧器,避免沼气直接排放产生安全隐患及破坏臭氧层。  q5 H7 s* v7 T! p; C0 [' Z

' S4 |1 j) _/ q本项目实际运行过程中厌氧反应器的进水量为1 100 m3/d,进水SCOD平均值为3 500 mg/L,容积负荷为1.4 kg SCOD/m3。厌氧单元的COD去除率高,好氧单元主要作用是脱氮除磷。厌氧单元具体运行数据如图。  S5 j' T8 O. S! y1 j5 B1 k

. s8 w5 l  |, N" W& R# L7 }
$ q: X, }6 `0 g9 B$ g, V 环保之家5.JPG " u: d+ E+ P3 \6 o' \9 s' [
厌氧单元进出水SCOD浓度及SCOD去除率5 @) D" `9 J% z* K4 `) K

. Y, {* I# W& e8 s由图可知,厌氧进水SCOD有波动,但是厌氧出水SCOD相对稳定,厌氧SCOD去除率>90%。
5 q5 f6 @, z/ F; d1 F. L' S( l2 x( U9 b9 V: X( K" Y
厌氧降解过程中产生沼气,较高的COD去除率,意味着较高的沼气产量,从能源利用角度来看,增加厌氧系统可以创造较高的经济效益。沼气产量与COD去除量曲线如图。
8 @8 K. |0 |5 f: a2 m/ o3 _
* v; M+ f, f2 K1 F3 v/ H 环保之家6.JPG ; ~7 Y4 \7 U, n6 ]# a0 F% y
厌氧单元沼气产量及SCOD去除量
& g; y. W" j# Y: h0 D7 y: P! n! h* V7 a& r& R9 C. f
由图可知,厌氧系统沼气产量与SCOD去除量成比例,经核算比产气率平均值约0.8 m3沼气/( kg SCOD)。比产气率曲线如图所示。5 H$ J, I$ ]& u8 j' T8 ?

1 N  k8 ]6 X9 H0 U" x7 y0 [ 环保之家7.JPG
! ]6 b$ K/ w. v. p) }厌氧单元沼气比产气率; {; T9 p% c3 `# K! F

4 L: e  V% S+ r  u制醋废水中很多悬浮物质是可被降解的COD,在SCOD的测定中这部分物质没有计入,因此,用SCOD核算的比产气率非常高。1 q: R& V' f6 Z/ M: j9 ~1 d5 E
7 s' n8 o- m8 L! r' a
厌氧出水COD浓度较低,因此,好氧单元的污泥负荷大幅降低,需氧量降低,曝气设备的运行能耗降低。同时因好氧进水有机物浓度降低,好氧污泥产量降低,污泥处理成本降低。- C0 s1 D0 Q0 e+ q' Y3 ~# p

$ I) w0 F" m/ B$ X  D综上可见,厌氧技术应用在制醋废水处理中,具有有机物去除率高,污水处理系统能耗降低,污泥处理成本降低,产生清洁能源的优势。
5 O4 G' B2 q- ]/ X7 m2 d: C9 Q1 Z# J& ]& J8 P
2.3 厌氧单元运行过程中存在问题及改进措施
- ~5 ?- l$ ?. Q! q: I2 n
: B3 @9 \  b9 @! y) `# ?% \7 [+ G, u! G
2.3.1 厌氧供料泵吸入口篮式过滤器频繁堵塞
; N9 E5 f( Y) J- J! }. m
# }9 S, R9 P8 i$ G# S6 V! O2 N% p6 S5 }" T8 A6 n* c2 ?
本项目原水中有醋糟压榨水,麸皮、谷糠等难降解的木质纤维素形成大量悬浮物,原有预处理设备中有1台机械格栅,齿耙间隔为5 mm,可以拦截废水中的部分塑料胶条和麸皮等,但是在调节池内仍然发现有麸皮等存留,为了避免悬浮物堵塞厌氧进水泵或进入厌氧反应器,设计时在厌氧供料泵吸入口管道上增加了篮式过滤器。实际运行过程中发现,经过机械格栅拦截之后进入调节池的废水中仍然含有很多悬浮物,导致篮式过滤器堵塞频繁,设备清理频率非常高,人工操作强度大。厌氧颗粒污泥取样过程中发现有麸皮存留于底部污泥床。
  Z9 w  G" A! d& H9 |5 c% y1 \+ _+ [6 d
结合现场实际情况,为避免麸皮等惰性物质进入厌氧反应器,并在系统内累积,影响厌氧污泥活性,工艺设计进行了优化:在调节池顶增加旋转滤网,滤网  采用栅条形不锈钢网,栅条间隔0.5mm。从优化后的运行情况看,栅格间距为0.5 mm的旋转滤网可以有效的拦截麸皮、谷糠的悬浮物质,有 利于后续厌氧系统运行。; _8 u- J+ Q7 S9 P3 g
, u% M# F. q. h, {6 r4 A+ r
2.3.2 沼气涤气塔填料结晶
9 l* g" H, ?6 q+ i3 Q  _, K5 u8 A* E* q1 P' Z
厌氧降解过程中产生沼气,其主要成分是甲烷和二氧化碳,此外还有少量的硫化氢气体和水蒸气。本项目设计原水硫酸根浓度小于30 mg/L,由此估算沼气中的硫化氢浓度应小于1‰,故设计采用沼气碱洗涤气塔,通过碱液喷淋沼气以去除沼气中的硫化氢气体。实际运行过程中测试发现沼气中硫化氢浓度约为3‰,二氧化碳约为200‰。涤气塔运行过程中控制较高的pH值以保证出口硫化氢浓度低于0.1‰不对后续锅炉造成腐蚀,但较高的pH和二氧化碳浓度使得涤气塔内形成碳酸钠结晶,同时碱的消耗量非常高。  e; Z, m* p. D& i( S
' n8 R! ~) |  K$ A' n/ j) _; O% u
结合本项目的实际情况,结晶主要在气温较低的时候出现,在沼气涤气塔底部增加了盘管式电加热器,以减缓结晶。从工艺原理角度看,对于二氧化碳浓度较高的沼气,沼气脱硫装置不宜采用碱洗脱硫设备,宜采用生物法脱硫设备,以降低化学品消耗量和避免填料结晶。原作者: 盛炜8 [! k% H0 }: A" C/ B! ~/ J9 `6 S: L
* a# R7 K4 ?2 W* J

© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。

举报 使用道具 回复

您需要登录后才可以回帖 登录 | 中文注册

本版积分规则

更多

客服中心

2121-416-824 周一至周五10:30-16:30
快速回复 返回顶部 返回列表
现在加入我们,拥有环保之家一站式通行证!马上 中文注册 账号登陆