脱硫脱硝 解析:水泥窑炉SNCR脱硝反应机制及运行 [复制链接]

1862 0
京东
选择性非催化还原反应(SNCR)是目前我国水泥生产企业广泛采用的脱硝技术。通过将氨水、尿素等还原剂以一定速度喷入分解炉中合适的温度窗口,将烟气中的NOx还原为N2,从而降低NOx排放量。尽管几乎所有水泥生产线NOx排放浓度都能达到国家标准要求,但还原剂用量差别非常大,如国内5000t/d熟料生产线氨水用量从200-300 L/h到1800-2000 L/h不等。还原剂用量不一、出口NOx浓度差异大,这除了与窑炉燃烧产生的初始NOx水平有关外,还与SNCR自身脱硝效率有更大关系。本文针对水泥窑炉SNCR反应机制进行探讨,以求降低还原剂用量,实现SNCR的优化运行。
/ B+ y4 O: ^, E; A! V. p9 G7 g/ j  D! w9 A0 O
5 u! H+ T: a) |7 M+ W
1. 还原剂与烟气中NOx的混合效果
1 }" i: Q. I% K! ~
  ]$ m' E2 `0 }8 g* T0 v对于任何气相化学反应,反应物之间混合情况直接影响反应速率。沃托兰廷、伯利休斯等研究表明,在还原剂喷入位置等条件相同时,水泥生产线规模越大,SNCR脱硝效率越低;原因在于规模越小的生产线设备尺寸越小,喷入的还原剂与烟气中NOx混合情况较好,脱硝效率较高,反之,脱硝效率较低。对于规模一定的生产线,还原剂与NOx的混合问题主要表现在以下两方面。
% J9 ?, a. d& _) B' ^! i: s( f8 ~7 ~5 i$ s2 F
第一,喷入的氨水无法及时到达分解炉中心,只能与分解炉周边烟气中的NOx发生反应。本文作者曾利用CFD对某5000t/d生产线分解炉内燃烧与分解反应进行模拟,在此基础上对还原剂喷入分解炉后的颗粒轨迹进行计算分析,结果如图1所示,其中颜色越深表明颗粒运动时间越长。
8 F2 L2 g* A' L. F
! T7 H& ]9 B" w, ?; }( G 环保之家.JPG + J, m2 X) C# B& q5 `1 K& F

/ r; f+ B: b9 O# Y图1 还原剂喷入分解炉后的运动轨迹& U5 \  U; Z5 S' `, L3 N
* k# n* c* h# J) F
如图1所示,虽然还原剂以20m/s的速度喷入分解炉,但迅速被炉内大量烟气带走,无法及时与分解炉中部大量烟气接触,导致分解炉边部还原剂浓度过高,而中部还原剂浓度过低,大大降低了SNCR脱硝效率。上述现象在水泥生产企业得到证实,如有些企业氨水喷枪损坏后,喷入的氨水雾化效果变差,但由于之前喷入的氨水与烟气中NOx混合情况就比较差(如图1所示),喷枪雾化效果变差并没有引起氨水用量的显著增加;另外,增加喷枪数量理论可以获得还原剂与烟气更好的混合效果,但实际应用表明增加喷枪并没有明显降低还原剂用量。与此同时,有些企业通过将位于分解炉出口的喷枪转移到C5预热器出口,由于此处烟气中NOx分布均匀且截面积较小,从而提高了SNCR脱硝效率。$ Z) B" [: e& p& \/ O$ r0 k
/ T8 `9 U) U& R; }0 s- @: c: \
第二,同一截面不同还原剂喷枪喷入位置的NOx分布不均。由于分解炉内具有喷腾、旋流等效应,导致分解炉烟气存在一定程度的分层现象,同一截面不同位置NOx浓度差异较大。应用CFD对某5000t/d生产线还原剂喷入位置的NOx浓度进行计算,结果如图2所示。3 Q5 `. X% |. M
% U1 |1 n: x8 ?. p5 @1 }
环保之家1.JPG
- [5 l( c. Z% b+ U& K) m$ F, H* D* Y# O8 {5 v9 `
图2还原剂喷入位置截面NOx体积浓度分数(%)及截面均分方法
7 z0 b  A4 `. B
; D& u- K8 B: j' }  j: j由图2可知,NOx在同一截面的分布存在显著差异。将该截面均匀分为四等分,分别记为左前、左后、右前、右后,如图2所示。截面每部分NOx浓度平均值如表1所示。
0 t4 l: R* W0 z: x# o; i$ w3 J/ L, [' A; U3 z8 A
表1 还原剂喷入位置截面不同部位NOx浓度平均值: D. Y+ u9 X& m" Z( Q% A
位置
左前
左后
右前
右后
NOx浓度/ppm
906
968
801
950
! I6 S: q" l* y+ r. j. C% ?

% A0 o. `4 u5 `9 N( F- _. C由表1可知,左后部分NO平均浓度最大,右前部分NO平均浓度最小,两者差别达到近170 ppm。我们对某5000t/d生产线分解炉(TDF)在还原剂喷入位置(鹅颈管出口)的实际测试表明,同一高度不同位置NOx浓度差超过了200 ppm。由于目前所有喷枪的还原剂喷入量一般相同,这使得NOx浓度较高的区域氨氮摩尔比(NSR)较低,而NOx浓度较低的区域NSR较高,从而降低了SNCR的脱硝效率。1 g5 H: n, p" S6 I
. w, I0 R1 d, F1 l# k" M2 D
(1)CO会影响SNCR脱硝反应温度# ~% R& Q0 |( r2 X& c4 @, F  b
' F, }& q# n( x
1 w! m, y  P# Z: L9 N' E& b
CO的存在显著降低了SNCR反应温度窗口,且CO浓度越高,SNCR反应温度窗口越低。当CO浓度为100 ppm时,SNCR反应最佳温度约为950℃;当CO浓度增加到1000 ppm时,SNCR反应最佳温度约为850℃;当CO浓度达到5000 ppm时,SNCR反应最佳温度只有750℃。该现象也在我国水泥生产企业得到证实。
8 O3 |* Z8 k" I7 `8 A/ G, C7 K+ D+ c$ C
环保之家2.JPG
' {2 ~( y# V9 @+ C/ {; a/ Y8 `3 d3 g

$ q. a5 D6 f9 z1 h7 [  L. N1 sCO浓度对SNCR反应效率的影响
1 K! X7 h  X" F3 U+ y' P1 i1 u9 u/ ?, a% H5 Z
(初始NOx=500ppm,还原剂为氨水,NSR=1.5)
# r& J1 h8 R. H0 J! n! n1 L: f0 x2 m. V
(2)CO浓度会降低SNCR脱硝效率  [8 E/ f! i7 q) ?9 y$ U
  C8 S" x8 R3 D
诸多研究表明,NH3与NOx反应之前,必须先生成NH2;触发NH3生成NH2的反应有多个,其中最重要的是NH3与OH的反应。OH来源于燃烧后的烟气,其同时也是CO氧化的反应物。由此,NH3和CO形成了对OH的竞争关系,如下所示。7 P! O. S; F6 C* M0 c! I

9 s' N; [! z7 T3 PNH3+OH→NH2+H2O                    (4)   2 V5 Z/ p6 @! Z; G/ ^/ k3 B* C

. \7 D* X4 m2 ]5 RCO+OH→CO2+H                         (5)  " D3 c0 |  ~" J" z

. e; b5 g$ Z" [简单来看,CO的存在会和NH3争夺OH,从而减少了NH2的生成,降低SNCR反应效率。但是,CO为什么又能降低SNCR反应温度窗口呢?这主要是由于上述反应产生的H会继续进行如下反应:
& p3 G$ F3 ?5 ?/ J6 O+ K8 e) r
( b/ V+ W2 }: y) D# nH+O2→OH+O                             $ \* C: X1 i: L8 K7 ?! x+ D/ U/ r
1 R4 X* ~+ s4 y2 J1 K' g
O+H2O→2OH                             
6 n9 @. ?( U1 o8 e9 L7 E: a0 a: [2 D7 P
当O2充足时,OH含量不仅没有因为反应(5)而减少,反而因为后续的链式反应而增加;除此,反应(5)是放热反应,有利于提高局部温度。OH含量的增加和反应(5)放出的热量,使得反应(4)在较低温度下得以较快进行,所以SNCR反应温度窗口降低。然而,OH含量的增加使得整体反应速率都加快,O含量也增加,O的增加促使更多NH2发生氧化反应生成NO,从而降低了SNCR脱硝效率,这也是建设SNCR系统时需要保证还原剂喷入位置CO浓度小于300  ppm的原因。除此,由于对OH的竞争关系,NH3的喷入会增加烟气中CO的含量。2 d! a; M4 j: i+ |" w
# K/ w% j# F4 D/ s. d. a3 q6 g) `
德国Bauverlag公司对三条使用PREPOL-MSC的分解炉进行了SNCR脱硝实验。该分解炉具有分级燃烧特点,部分燃料直接喂入窑尾烟室,以削减窑内NOx;为了增强燃烧后烟气与氧气的混合,在三次风管上方安装有扰流室,以保证完全燃烧。实验时,将氨水分别喷入分解炉三个部分,即仍处于燃烧状态的还原区域(930-990℃)、三次风管与扰流室之间的氧化区域(890℃)、扰流室与末级预热器之间的氧化区域(850-870℃)。结果表明,喷入氨水的位置越远离燃烧区域,脱硝效率越高。8 m0 w( ]2 b* X, A

. ]& ~/ _1 m* g8 e(3)结论" u0 `1 w- T& `8 f! Q. G, G

/ B4 N" ~; e9 L% \+ Z8 I# N$ x氨水喷枪移动到C5预热器出口后,部分企业氨水用量明显减少,部分企业变化不明显,这除了与反应时间有关外,更多取决于分解炉内CO的浓度。如果分解炉CO浓度并不高,将喷枪移到C5预热器出口,SNCR脱硝效率会因为C5出口温度较低而下降;如果分解炉CO浓度较高,将喷枪移到C5预热器出口具有以下优势,一方面避免分解炉喷入位置CO含量较高而导致实际温度超过SNCR温度窗口,另一方面移动到C5出口后,CO浓度有所降低,这有利于SNCR脱硝反应的进行。来源:水泥,2018年第2期。8 _3 C' g4 w* K6 {& j

/ @$ ~* i' [. X/ Y, j) R( Y

© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。

举报 使用道具 回复

您需要登录后才可以回帖 登录 | 中文注册

本版积分规则

更多

客服中心

2121-416-824 周一至周五10:30-16:30
快速回复 返回顶部 返回列表
现在加入我们,拥有环保之家一站式通行证!马上 中文注册 账号登陆