脱硫脱硝 解析:水泥窑炉SNCR脱硝反应机制及运行 [复制链接]

2565 0
京东
选择性非催化还原反应(SNCR)是目前我国水泥生产企业广泛采用的脱硝技术。通过将氨水、尿素等还原剂以一定速度喷入分解炉中合适的温度窗口,将烟气中的NOx还原为N2,从而降低NOx排放量。尽管几乎所有水泥生产线NOx排放浓度都能达到国家标准要求,但还原剂用量差别非常大,如国内5000t/d熟料生产线氨水用量从200-300 L/h到1800-2000 L/h不等。还原剂用量不一、出口NOx浓度差异大,这除了与窑炉燃烧产生的初始NOx水平有关外,还与SNCR自身脱硝效率有更大关系。本文针对水泥窑炉SNCR反应机制进行探讨,以求降低还原剂用量,实现SNCR的优化运行。
2 V4 L1 T7 V/ ?, z6 Y
* j: ^' j4 w- {' t2 h/ t; E
$ H# ^9 z3 {" A, T$ S. U& k0 J1. 还原剂与烟气中NOx的混合效果
4 i3 {) q9 f9 `
* }) b; H: l0 @$ w$ X& s对于任何气相化学反应,反应物之间混合情况直接影响反应速率。沃托兰廷、伯利休斯等研究表明,在还原剂喷入位置等条件相同时,水泥生产线规模越大,SNCR脱硝效率越低;原因在于规模越小的生产线设备尺寸越小,喷入的还原剂与烟气中NOx混合情况较好,脱硝效率较高,反之,脱硝效率较低。对于规模一定的生产线,还原剂与NOx的混合问题主要表现在以下两方面。
% p) @. q( H8 t1 N  l" c2 v. _1 |: [
第一,喷入的氨水无法及时到达分解炉中心,只能与分解炉周边烟气中的NOx发生反应。本文作者曾利用CFD对某5000t/d生产线分解炉内燃烧与分解反应进行模拟,在此基础上对还原剂喷入分解炉后的颗粒轨迹进行计算分析,结果如图1所示,其中颜色越深表明颗粒运动时间越长。: h( t" C. c; u: r$ \
, g1 H! Q1 t/ _& f2 c
环保之家.JPG
2 B; a, a! d3 V) ~4 e5 [, m3 O( N1 ]2 l3 D7 v- m7 l% \8 c6 s
图1 还原剂喷入分解炉后的运动轨迹
  T/ D- F* |% F, j9 j, Y- d5 H& W& T0 j# {. ], c7 @
如图1所示,虽然还原剂以20m/s的速度喷入分解炉,但迅速被炉内大量烟气带走,无法及时与分解炉中部大量烟气接触,导致分解炉边部还原剂浓度过高,而中部还原剂浓度过低,大大降低了SNCR脱硝效率。上述现象在水泥生产企业得到证实,如有些企业氨水喷枪损坏后,喷入的氨水雾化效果变差,但由于之前喷入的氨水与烟气中NOx混合情况就比较差(如图1所示),喷枪雾化效果变差并没有引起氨水用量的显著增加;另外,增加喷枪数量理论可以获得还原剂与烟气更好的混合效果,但实际应用表明增加喷枪并没有明显降低还原剂用量。与此同时,有些企业通过将位于分解炉出口的喷枪转移到C5预热器出口,由于此处烟气中NOx分布均匀且截面积较小,从而提高了SNCR脱硝效率。! n) C7 _* v8 w. V8 d* I
3 L5 i6 t  o2 h0 q9 a; |3 B/ ^: |
第二,同一截面不同还原剂喷枪喷入位置的NOx分布不均。由于分解炉内具有喷腾、旋流等效应,导致分解炉烟气存在一定程度的分层现象,同一截面不同位置NOx浓度差异较大。应用CFD对某5000t/d生产线还原剂喷入位置的NOx浓度进行计算,结果如图2所示。; S- J+ X6 n; i! {5 H" n

1 h% B9 L; y1 \% D$ c& v: \; j 环保之家1.JPG 9 G( v/ w9 }" R4 \; j. o

" z$ \  W3 e6 z& u- f* i! N8 O图2还原剂喷入位置截面NOx体积浓度分数(%)及截面均分方法8 F3 U: C. s; W0 r
% _: A9 w0 ~) {: W1 l
由图2可知,NOx在同一截面的分布存在显著差异。将该截面均匀分为四等分,分别记为左前、左后、右前、右后,如图2所示。截面每部分NOx浓度平均值如表1所示。5 X! h3 B3 k# p5 s. S% M! s
4 \0 J) |0 J" ]! @. X9 m+ M3 ^2 }; I
表1 还原剂喷入位置截面不同部位NOx浓度平均值' W* D( S+ z) R! Y; f
位置
左前
左后
右前
右后
NOx浓度/ppm
906
968
801
950

( t- h) }3 Y9 A$ p0 G0 f5 ~& `1 C

2 e: {) D) x7 E. g' o  ]* j  v由表1可知,左后部分NO平均浓度最大,右前部分NO平均浓度最小,两者差别达到近170 ppm。我们对某5000t/d生产线分解炉(TDF)在还原剂喷入位置(鹅颈管出口)的实际测试表明,同一高度不同位置NOx浓度差超过了200 ppm。由于目前所有喷枪的还原剂喷入量一般相同,这使得NOx浓度较高的区域氨氮摩尔比(NSR)较低,而NOx浓度较低的区域NSR较高,从而降低了SNCR的脱硝效率。
- e" |/ a3 V! q9 x
" h3 A7 h5 ?8 A. e$ u. A9 g(1)CO会影响SNCR脱硝反应温度$ R3 B5 M5 Q; A
5 z# O5 J; t/ Z/ [+ Q

, f5 ~. c7 e  J4 U6 S" I% h- BCO的存在显著降低了SNCR反应温度窗口,且CO浓度越高,SNCR反应温度窗口越低。当CO浓度为100 ppm时,SNCR反应最佳温度约为950℃;当CO浓度增加到1000 ppm时,SNCR反应最佳温度约为850℃;当CO浓度达到5000 ppm时,SNCR反应最佳温度只有750℃。该现象也在我国水泥生产企业得到证实。
6 D! l% z+ o2 H/ _* G' x& A5 \, e
. }4 ^1 F) x9 ^  o$ j2 \. ?8 x 环保之家2.JPG ( v6 Q1 X" S/ r( D, Q7 T4 a' y+ {+ N
8 X+ {" K& N) S" |+ h0 y+ K
0 s, D2 T* B8 f& u
CO浓度对SNCR反应效率的影响  y2 }, J0 R' M6 L: x9 Y3 T
0 x# h. H+ b1 [. Z. }) I
(初始NOx=500ppm,还原剂为氨水,NSR=1.5)* _# m0 b: g, ^, t

/ k, G) w1 T6 g: B, T3 l' d" S$ k(2)CO浓度会降低SNCR脱硝效率
8 Z  a/ q7 l0 x$ ^
  h7 J9 s  D" C: Y% |+ c诸多研究表明,NH3与NOx反应之前,必须先生成NH2;触发NH3生成NH2的反应有多个,其中最重要的是NH3与OH的反应。OH来源于燃烧后的烟气,其同时也是CO氧化的反应物。由此,NH3和CO形成了对OH的竞争关系,如下所示。
8 W2 C4 D6 x) g" W+ I
9 l% k: U- N* k2 }2 R2 Q+ zNH3+OH→NH2+H2O                    (4)   
' i& p6 ?" U3 q3 c7 N8 R* E; ^
) b+ n1 R4 K% Y7 d- ~CO+OH→CO2+H                         (5)  ; [$ F6 L0 F. L' s% }$ p8 `- \  S
& S$ n# n" s. y8 b
简单来看,CO的存在会和NH3争夺OH,从而减少了NH2的生成,降低SNCR反应效率。但是,CO为什么又能降低SNCR反应温度窗口呢?这主要是由于上述反应产生的H会继续进行如下反应:6 i( j% n/ Y5 D# E) S

) g" M7 ^3 h0 b; \- fH+O2→OH+O                             
/ j. C1 ~! j( p; f( ?$ ~
. D6 [9 x" c0 p0 t, fO+H2O→2OH                             
1 E* o$ N5 H- ?  Y" l
! E& J/ |$ o0 A4 M当O2充足时,OH含量不仅没有因为反应(5)而减少,反而因为后续的链式反应而增加;除此,反应(5)是放热反应,有利于提高局部温度。OH含量的增加和反应(5)放出的热量,使得反应(4)在较低温度下得以较快进行,所以SNCR反应温度窗口降低。然而,OH含量的增加使得整体反应速率都加快,O含量也增加,O的增加促使更多NH2发生氧化反应生成NO,从而降低了SNCR脱硝效率,这也是建设SNCR系统时需要保证还原剂喷入位置CO浓度小于300  ppm的原因。除此,由于对OH的竞争关系,NH3的喷入会增加烟气中CO的含量。0 ^/ |# m& a, t" J% N1 Q. ]5 d
6 ]6 b: T* ~5 b2 J' b  j
德国Bauverlag公司对三条使用PREPOL-MSC的分解炉进行了SNCR脱硝实验。该分解炉具有分级燃烧特点,部分燃料直接喂入窑尾烟室,以削减窑内NOx;为了增强燃烧后烟气与氧气的混合,在三次风管上方安装有扰流室,以保证完全燃烧。实验时,将氨水分别喷入分解炉三个部分,即仍处于燃烧状态的还原区域(930-990℃)、三次风管与扰流室之间的氧化区域(890℃)、扰流室与末级预热器之间的氧化区域(850-870℃)。结果表明,喷入氨水的位置越远离燃烧区域,脱硝效率越高。  u% s  S3 X9 J6 n( N
0 G1 X" I, P4 I6 j. c- [  E+ n
(3)结论
) x% O$ E- L& ~0 c# `: N, ~$ e4 @
, f9 W# [6 N1 J- I' @氨水喷枪移动到C5预热器出口后,部分企业氨水用量明显减少,部分企业变化不明显,这除了与反应时间有关外,更多取决于分解炉内CO的浓度。如果分解炉CO浓度并不高,将喷枪移到C5预热器出口,SNCR脱硝效率会因为C5出口温度较低而下降;如果分解炉CO浓度较高,将喷枪移到C5预热器出口具有以下优势,一方面避免分解炉喷入位置CO含量较高而导致实际温度超过SNCR温度窗口,另一方面移动到C5出口后,CO浓度有所降低,这有利于SNCR脱硝反应的进行。来源:水泥,2018年第2期。5 V3 U4 v( ?7 Z7 g* z. u5 B2 l

, q, ~4 s5 b# n1 Y- x

© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。

举报 使用道具 回复

您需要登录后才可以回帖 登录 | 中文注册

本版积分规则

更多

客服中心

2121-416-824 周一至周五10:30-16:30
快速回复 返回顶部 返回列表
现在加入我们,拥有环保之家一站式通行证!马上 中文注册 账号登陆