脱硫脱硝 解析:水泥窑炉SNCR脱硝反应机制及运行 [复制链接]

1850 0
京东
选择性非催化还原反应(SNCR)是目前我国水泥生产企业广泛采用的脱硝技术。通过将氨水、尿素等还原剂以一定速度喷入分解炉中合适的温度窗口,将烟气中的NOx还原为N2,从而降低NOx排放量。尽管几乎所有水泥生产线NOx排放浓度都能达到国家标准要求,但还原剂用量差别非常大,如国内5000t/d熟料生产线氨水用量从200-300 L/h到1800-2000 L/h不等。还原剂用量不一、出口NOx浓度差异大,这除了与窑炉燃烧产生的初始NOx水平有关外,还与SNCR自身脱硝效率有更大关系。本文针对水泥窑炉SNCR反应机制进行探讨,以求降低还原剂用量,实现SNCR的优化运行。
+ l3 v8 _8 z: X4 d6 W+ ~& q( ]! t& y6 b7 E3 W
) k: K# f! @. o  j/ h4 Z7 W
1. 还原剂与烟气中NOx的混合效果
2 P) R2 C( {& j2 i9 C: X3 P7 b" q$ N$ L8 P6 ^
对于任何气相化学反应,反应物之间混合情况直接影响反应速率。沃托兰廷、伯利休斯等研究表明,在还原剂喷入位置等条件相同时,水泥生产线规模越大,SNCR脱硝效率越低;原因在于规模越小的生产线设备尺寸越小,喷入的还原剂与烟气中NOx混合情况较好,脱硝效率较高,反之,脱硝效率较低。对于规模一定的生产线,还原剂与NOx的混合问题主要表现在以下两方面。" y. F5 X4 l5 B3 K. f
9 o  _/ r7 o$ e" i
第一,喷入的氨水无法及时到达分解炉中心,只能与分解炉周边烟气中的NOx发生反应。本文作者曾利用CFD对某5000t/d生产线分解炉内燃烧与分解反应进行模拟,在此基础上对还原剂喷入分解炉后的颗粒轨迹进行计算分析,结果如图1所示,其中颜色越深表明颗粒运动时间越长。# Z0 L) u2 `$ C- q
# u9 B& ~; J$ p6 M, ~9 `
环保之家.JPG $ g. Z; I: `6 `2 r, Q

/ L8 j1 F% b8 n- ~9 z% W图1 还原剂喷入分解炉后的运动轨迹
  K5 p) b# Z+ M7 h4 {
3 G6 H" h8 d4 m; j/ N0 W如图1所示,虽然还原剂以20m/s的速度喷入分解炉,但迅速被炉内大量烟气带走,无法及时与分解炉中部大量烟气接触,导致分解炉边部还原剂浓度过高,而中部还原剂浓度过低,大大降低了SNCR脱硝效率。上述现象在水泥生产企业得到证实,如有些企业氨水喷枪损坏后,喷入的氨水雾化效果变差,但由于之前喷入的氨水与烟气中NOx混合情况就比较差(如图1所示),喷枪雾化效果变差并没有引起氨水用量的显著增加;另外,增加喷枪数量理论可以获得还原剂与烟气更好的混合效果,但实际应用表明增加喷枪并没有明显降低还原剂用量。与此同时,有些企业通过将位于分解炉出口的喷枪转移到C5预热器出口,由于此处烟气中NOx分布均匀且截面积较小,从而提高了SNCR脱硝效率。
+ m! S. G. Y* |; v/ K1 N' ?- R* ~
第二,同一截面不同还原剂喷枪喷入位置的NOx分布不均。由于分解炉内具有喷腾、旋流等效应,导致分解炉烟气存在一定程度的分层现象,同一截面不同位置NOx浓度差异较大。应用CFD对某5000t/d生产线还原剂喷入位置的NOx浓度进行计算,结果如图2所示。$ L3 a2 c9 t* V" c5 O' k

8 g" u: |* o& u8 f  K 环保之家1.JPG
7 k( A: u; U$ B2 C3 q) C7 _
# s! @# ]1 ~. {图2还原剂喷入位置截面NOx体积浓度分数(%)及截面均分方法
6 n) F  k$ b) d1 f/ F) d! J% R
8 m. D, P/ j+ f- X由图2可知,NOx在同一截面的分布存在显著差异。将该截面均匀分为四等分,分别记为左前、左后、右前、右后,如图2所示。截面每部分NOx浓度平均值如表1所示。
4 K6 z. t9 ^# e3 ]! g0 M& Y- L4 u- Y5 _
表1 还原剂喷入位置截面不同部位NOx浓度平均值
% u6 m9 p1 }& O* f2 g& G( A
位置
左前
左后
右前
右后
NOx浓度/ppm
906
968
801
950

& l8 A" B5 P" U# s2 s7 j- `, Y
6 [% N; G  i: R. T  Z% v
由表1可知,左后部分NO平均浓度最大,右前部分NO平均浓度最小,两者差别达到近170 ppm。我们对某5000t/d生产线分解炉(TDF)在还原剂喷入位置(鹅颈管出口)的实际测试表明,同一高度不同位置NOx浓度差超过了200 ppm。由于目前所有喷枪的还原剂喷入量一般相同,这使得NOx浓度较高的区域氨氮摩尔比(NSR)较低,而NOx浓度较低的区域NSR较高,从而降低了SNCR的脱硝效率。  I) m9 o; b1 e2 P; W* Q% j* E( E

) ]: z. \/ y) W' o(1)CO会影响SNCR脱硝反应温度2 t4 p4 W0 Q& }% T% T
( N3 H% Z" O; ?9 W, n0 Y! Q: f3 g

( G% u8 F1 e$ j' n( R! H; @( UCO的存在显著降低了SNCR反应温度窗口,且CO浓度越高,SNCR反应温度窗口越低。当CO浓度为100 ppm时,SNCR反应最佳温度约为950℃;当CO浓度增加到1000 ppm时,SNCR反应最佳温度约为850℃;当CO浓度达到5000 ppm时,SNCR反应最佳温度只有750℃。该现象也在我国水泥生产企业得到证实。, z" N4 O& B5 g8 _& U- t
: O( t+ z0 E1 C% X
环保之家2.JPG . `3 g  i) l( I' X

0 x* n4 O$ f4 e1 I8 j  H9 d. b
& L$ g) S& y& y% y! zCO浓度对SNCR反应效率的影响
+ Q, w( A, m2 ?- H) b- @5 f9 i, S  {. ]0 z7 @* L
(初始NOx=500ppm,还原剂为氨水,NSR=1.5)1 E/ v3 }2 t) d6 [2 i

  A+ Y. I: \, j+ K/ D(2)CO浓度会降低SNCR脱硝效率% {  z  j1 {/ @
$ Y+ A5 x: d$ z0 y2 t' w
诸多研究表明,NH3与NOx反应之前,必须先生成NH2;触发NH3生成NH2的反应有多个,其中最重要的是NH3与OH的反应。OH来源于燃烧后的烟气,其同时也是CO氧化的反应物。由此,NH3和CO形成了对OH的竞争关系,如下所示。* `' ?$ S. Y5 E4 N# A
" P% f) v$ P0 p3 n. s. W
NH3+OH→NH2+H2O                    (4)   
- I5 r3 L6 K7 |4 v
% |6 D, W1 `- i9 J7 HCO+OH→CO2+H                         (5)  6 y, f. ^6 u( Y1 E4 \& G- I
& j" d0 {" z: a8 K! Q2 q: v
简单来看,CO的存在会和NH3争夺OH,从而减少了NH2的生成,降低SNCR反应效率。但是,CO为什么又能降低SNCR反应温度窗口呢?这主要是由于上述反应产生的H会继续进行如下反应:
& `6 [: r' m% @, p
$ m+ T/ \1 _- Z3 a: o* SH+O2→OH+O                             & c! h% C! k/ L7 P. M

3 O+ J; L( ?, D/ _* KO+H2O→2OH                             & h0 O$ C$ ]+ p: h# s0 O

, v) W  ]1 u" @- D4 g/ }, ]当O2充足时,OH含量不仅没有因为反应(5)而减少,反而因为后续的链式反应而增加;除此,反应(5)是放热反应,有利于提高局部温度。OH含量的增加和反应(5)放出的热量,使得反应(4)在较低温度下得以较快进行,所以SNCR反应温度窗口降低。然而,OH含量的增加使得整体反应速率都加快,O含量也增加,O的增加促使更多NH2发生氧化反应生成NO,从而降低了SNCR脱硝效率,这也是建设SNCR系统时需要保证还原剂喷入位置CO浓度小于300  ppm的原因。除此,由于对OH的竞争关系,NH3的喷入会增加烟气中CO的含量。
- k1 h! o( f% E! X! h; w/ n' {- m  @& X) f( Q
德国Bauverlag公司对三条使用PREPOL-MSC的分解炉进行了SNCR脱硝实验。该分解炉具有分级燃烧特点,部分燃料直接喂入窑尾烟室,以削减窑内NOx;为了增强燃烧后烟气与氧气的混合,在三次风管上方安装有扰流室,以保证完全燃烧。实验时,将氨水分别喷入分解炉三个部分,即仍处于燃烧状态的还原区域(930-990℃)、三次风管与扰流室之间的氧化区域(890℃)、扰流室与末级预热器之间的氧化区域(850-870℃)。结果表明,喷入氨水的位置越远离燃烧区域,脱硝效率越高。" E& g) ]0 O! Y: u8 s% A# |
6 R- w$ |9 S: L5 |3 [5 ^5 P# w
(3)结论
6 Y0 E3 O4 g9 g$ s' y/ E" C7 U/ \  F+ q5 d
氨水喷枪移动到C5预热器出口后,部分企业氨水用量明显减少,部分企业变化不明显,这除了与反应时间有关外,更多取决于分解炉内CO的浓度。如果分解炉CO浓度并不高,将喷枪移到C5预热器出口,SNCR脱硝效率会因为C5出口温度较低而下降;如果分解炉CO浓度较高,将喷枪移到C5预热器出口具有以下优势,一方面避免分解炉喷入位置CO含量较高而导致实际温度超过SNCR温度窗口,另一方面移动到C5出口后,CO浓度有所降低,这有利于SNCR脱硝反应的进行。来源:水泥,2018年第2期。& m1 V- P" [7 n0 M& l+ d" f
' v3 t) u7 l, K8 k- R4 n

© 声明:本文仅表作者或发布者个人观点,与环保之家[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。

举报 使用道具 回复

您需要登录后才可以回帖 登录 | 中文注册

本版积分规则

更多

客服中心

2121-416-824 周一至周五10:30-16:30
快速回复 返回顶部 返回列表
现在加入我们,拥有环保之家一站式通行证!马上 中文注册 账号登陆