搜索

VOCs治理 | 活性炭吸脱附系统中脱附温度影响因素及脱附效果解析

[复制链接]
环境阅读 发表于 2019-8-5 20:14 | 显示全部楼层 打印 上一主题 下一主题
在工程实践中可观察到部分挥发性有机物的脱附温度及效率见下表(来源:李守信,陈青松,罗鑫,等.吸附法处理VOCs脱附温度的选择[J].中国环保产业,2018,(3):48-50)。! W$ I3 Z6 c% T) ~7 @
3 j* Z* U  _0 T; i) Q  I5 y
环境学社3.jpg
6 w9 l  {6 ?0 W0 @% u
( w7 e7 G/ G' J) `' [ 环境学社22.jpg , w* b6 ?) t3 D: ^! Q5 `
; D* E! @0 n+ i1 C* l# R% S5 p
由上表可以看出:
6 e. c  [) S" q5 S- F: x9 S
: F, {& M4 i; ]) J0 n, U; Q6 ^(1)脱附温度与物质的沸点基本没有关系。以三甲苯为例,其沸点是164.7℃,而采用100℃的水蒸汽,却能够将其很好地脱附下来(脱附率97.01%)。而对于比它的沸点低得多的丙烯酸(沸点141℃),采用100℃的水蒸汽进行脱附时,丝毫不起作用。: ^) J% `: q6 Q$ F  }1 G

! ^0 V9 C5 M, t. Y: ^: {(2)纵观上表中的各种物质,凡是饱和蒸气压在10.0kPa以上的物质,采用100℃的水蒸汽都能够很好地脱附下来。而饱和蒸气压较低的物质,如苯乙烯(25℃时为0.841)、邻苯二甲酸二丁酯(148.2℃时为0.13)、丙烯酸丁酯(20℃时为0.53)等,虽然沸点比三甲苯低得多,但由于它们的饱和蒸气压很低,采用100℃的水蒸汽仍然无法将它们脱附下来。
: u# N$ q( X5 Y+ w% @) [2 b
) R: J; I7 f. r# w2 I$ C. {) U: M- Z由此可得出结论:物质的脱附温度基本与沸点无关,而和它的饱和蒸气压有密切关系。
" F3 y, R" Q2 H3 Y
: {2 D9 R' L4 S. R* ?$ q9 [(3)一些物质之所以难以脱附,皆是因为它们的饱和蒸气压很低造成的。由此,也可纠正对苯乙烯难以脱附的原因归结到“苯乙烯在吸附剂表面发生了聚合反应”的错误认识。
8 j& Y9 M4 }# t
7 \& o: Y  L: h; l3 H5 Q  f(4)对于难以脱附的物质,当采用热氮气脱附时,并不是温度越高脱附的越彻底,过高的脱附温度反而使其脱附效率下降。如表中所示,在采用热氮气对甲基异丁酮(沸点115.8℃,20℃时的饱和蒸气压为2.13kPa)进行脱附时发现,当温度升至100℃时,脱附率只有63.10%;为提高脱附率,将氮气温度提高到170℃,此时的脱附率达到76.50%;这时考虑再升温已毫无意义,将温度试着下降,结果发现,脱附率反而逐渐上升。当温度降至110℃时,脱附率达到了峰值99.20%。3 G. F9 O& d5 E) z& H* y: ?

- B; s. w! w  E! l. a$ U# y因此得出,对于难以脱附的物质进行脱附时,并不是温度越高,脱附越彻底,过高的脱附温度反而使其脱附效率下降。如遇此类问题时,应通过实验,慎重选择适当的脱附温度,以取得最佳的脱附效率。- d0 h4 ~6 @8 C8 Z) @
1 r: T( d: N+ l" H
活性炭脱附VOCs效果分析
% u  I- d. n- ~( ~! w  |8 h' d
! i! B& v( Y8 ^6 t6 w) Q9 y6 H$ d
(1)脱附温度与饱和蒸气压的关系。从脱附原理上讲,吸附质从吸附剂表面脱附的根本原因是,吸附质分子必须克服吸附剂表面对它的引力,增大它脱离表面的推动力。也就是说,要想使吸附质分子从吸附剂表面脱附下来,就必须给它能量或推动力,使其能够从吸附剂表面“蒸发”到吸附剂孔道中,从而进入气相主体。而在通常采用的脱附方法中,加热脱附是给其提供能量,以增加分子的动能;吹扫脱附和降压(真空)脱附,都是为了降低吸附剂孔道中废气分子的分压,也就是蒸气压,给废气造成一个浓度差,从而给废气分子由吸附剂表面向气相转移提供一个推动力,这个推动力越大,废气分子的脱附速度就越快。所以,从这个理论出发就不难理解,吸附质的脱附温度是与其饱和蒸气压直接相关的,而与它的沸点无关。
2 E2 Q+ ~- G. G# O; u9 _( d' M3 p5 [$ z5 Q: t, K
(2)一些饱和蒸气压较低的物质在脱附时,温度过高反而会使脱附率下降。从吸附的分类上说,可分为物理吸附和化学吸附。物理吸附,所形成的键能只在范德华力的范围,即最大只有80kJ/kmol左右,而化学吸附的吸附键力可达到400kJ/kmol以上。在物质的吸附上,往往存在一种现象:当温度低时是物理吸附,如果温度升高,则可能转变为化学吸附。也就是说,当脱附温度过高时,使本来存在的物理吸附状态可能转化成化学吸附状态,使得吸附键的键能大大增加,因而反而不易脱附下来。这就是为什么温度过高,反而使物质脱附率下降的原因。
7 R8 O# z, G" m
) f, d* h: R6 H' S2 F4 z' E当然,要想彻底搞清这个问题,只能对两种状态的吸附键的键能进行测定。但目前对吸附键键能的测定还较困难,虽然有人采用同步辐射光电离的方法,能够测定一些物质的化学键的键能,但采用此法能不能很好地测定吸附键的键能,目前还未见报道。/ j0 E% P% \' @: S' H2 K
  A" M6 |, ]! r9 ]
对脱附温度确定方法的建议
: k9 _$ U6 o8 A. \& W8 v3 M

' N6 |+ I  o; e/ P) M0 Z& {(1)对于饱和蒸气压>10kPa的物质,原则上都可以采用100℃的水蒸汽进行脱附;但从节约能源的角度讲,建议对饱和蒸气压较大且沸点较低(如<70℃)的物质,如:丙酮:沸点56.1℃,饱和蒸气压2371.86kPa (100℃);四氢呋喃:沸点66℃,饱和蒸气压101.33kPa(66.0℃);二氯甲烷:沸点39.75℃,饱和蒸气压80.00kPa(35℃)等,建议采用较低温度的氮气进行脱附,这样不仅可降低脱附剂的温度,同时在对脱附后混合气体冷凝时,也不用采用温度很低的冷凝水进行冷凝分离(如二氯甲烷需要采用7℃低温水进行冷凝分离),就可以节约能源。由于采用了氮气脱附,也就省去了对冷凝水的处理问题。
( Q3 i2 Y! S$ @# h/ n- E
+ A# q, c9 M0 P' V; Q6 ^0 l(2)对于饱和蒸气压较低的物质采用高温脱附时,也要采用适当的温度进行脱附,这样既能收到高的脱附效率,也能达到节能目的。5 A- F6 ]; H8 Q( b! h4 D$ @1 D: g
' z2 B* a, M+ ]/ N% V4 X* `
当然,对于各种物质脱附温度的选择,目前还没有现成的数据可以查询,还需要进行反复实验才能初步确定,然后再进行经济可行性分析,才能最后确定所选择的脱附温度是否合适。
; {, I0 P! Y0 _2 c, |
" x0 a' h# U, u- c

© 声明:本文仅表作者或发布者个人观点,与环保学社[2TECH.CN]无关。其原创性及陈述文字、内容、数据及图片均未经证实,对本文及其全部或部分内容、图片、文字的真实性、完整性、及时性本站不作任何保证或承诺,仅做参考并自行核实。如有侵权,请联系我们处理,在此深表歉意。

您需要登录后才可以回帖 马上登录 | 中文注册

本版积分规则

技术话题

关于我们
关于我们
友情链接
联系我们
帮助中心
网友中心
购买须知
支付方式
服务支持
资源下载
售后服务
定制流程
关注我们
官方微博
官方空间
官方微信
快速回复返回顶部 返回列表